
Modern  Concepts  for  Avionics  Systems  Validation  Test 
Environments1 

John T.  B.  Mayer 
Leticia Montaiiez 
James A. Roberts 
Ricky D. Graves 

Jet  Propulsion  Laboratory 
California  Institute of Technology 

4800  Oak  Grove  Drive 
Pasadena,  CA  91 109 

john.t.mayer@jpl.nasa.gov 
8 18-354-4397 

Abstract- The Cassini Project  is  the last of the  large  inter-  customkommercial system testbed  for  Cassini. 
planetary  spacecraft  missions. The Integration Test 
Laboratory  (ITL) at the  Jet  Propulsion  Laboratory (JPL) is This  paper will present a  description of the simulatjon 
part of the Cassini Project.  This  laboratory  includes  the system and the innovations that were  incorporated. ’ An 
Attitude Articulation Control  Subsystem  (AACS)  testbed.  overview of the SE hardware will be presented but the focus 
This environment was  used to not only verify and validate will be on the simulation software.  This  paper will conclude 
the AACS but  was also used to develop  advanced  concepts with a discussion on  the  future  innovations that are 
and ideas for use in future  testbed  environments.  developing for this area. 

The  concepts  developed  for the AACS testbed included  the 2. DESCRIPTION OF THE CASSINI AACS SE 
use of multiple computers,  real-time  data  collection  and  real- 
time display, internet and the incorporation of This  section will present a hardware  overview that supports 
commercially available  components.  These  concepts the software system i31. 
resulted In improved  simulation  fidelity,  repeatable 
operation and reduced future  operational  costs.  This  paper AACS Hardware Description 
will focus on a description of the testbed, lessons learned,  The  Cassini  Support  Equipment  Software Simulation runs 
the innovations used and  future  directions that will on a multi-processor environment.  This  type  of environment 
substantially reduce future  testbed  costs.  allows massive amounts of computations  to be performed at 
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1. INTRODUCTION 

The Cassini Attitude and Articulation Control  System 
(AACS)  Support  Equipment (SE) software was developed to 
exercise and  test the AACS flight  equipment,  flight  software 
and procedures.  This  project represents the continued 
evolution of testbed technology that started as pure  analog 
systems, progressing to Space  Shuttle’s  custom  built 
testbeds [ 1,2], the introduction of commercial systems into 
the Galileo  testbeds, cumulating in a hybrid 

greater  speeds.  Communications  between  each processor is 
performed by  way  of reflective  memory  boards  (VMIVME- 
5550). In order to keep the integrity  and time homogeneity 
of data in a multi-processor environment, a Blackboard 
System [41  was employed. 

The SE Software originally ran on thirteen processors. 
These processors included five  Motorola  68030 and  two 
SkyBolt processors for the real-time  processing, one Sun 
Sparc  2 and five IPC’s for the user interface and  host 
computers. Later we added a H P  725 for archive purposes, 
a Silicon Graphics Inc.  (SGI)  Crimson  for graphics 
capabilities and a generic PC for  collecting bus data. 

As these products neared the  end of their  lifecycle they  were 
replaced with  newer technology.  We  currently use four 
Motorola  PowerPC’s  (PPC  604)  for  real-time processing, 
one Sun UltraSparc I1 for  archive, one  Sparc  20  for host 
functions and  two generic PC’s  for  graphics and bus 
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monitoring functions. As a  byproduct of the  processor  processing time consumption.  The  portion of the software 
replacements we were able to reduce  the  number of that was developed  to  implement  this  concept  is  named the 
components and the complexity of the  testbed. A prime  Blackboard. 
example of this is how we were able  to  go  from  custom 
graphics  on  the  SGI  machine  and  22K  lines  of c code, to a  The  Blackboard  can be viewed  as a  database that is shared 
VRML model  on a  PC using about 500 lines of Java  code.  among  processors in the SE lab. Since  each Processor is 

physically located in a different  chassis  in  the SE lab an 
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Figure 1 : Cassini  AACS  SE  Hardware  Configuration 

Figure 1 shows the hardware configuration  presently in use. 

AACS SE Software Description 

The  design of  the SE Software is centered  about the idea  of 
responding to change [5]. This idea is based  on  the  fact that 
for  every change that is detected by the SE Software there is 
a specific response. The advantage to this  design  is that it 
leads  to a low CPU processing time  utilization. A global 
polling environment was ruled out because of its high 

identical database must exist in each processor's  memory. If 
any processor  changes an entry in the database, the entry 
must  be updated in  every other database that contains the 
entry.  This will insure that data integrity is  keep throughout 
the system. Time  homogeneity can be also  kept using  this 
same process. 

Reflective memory boards  are used to  implement the 
Blackboard  concept  in the SE  Software  design.  A  reflective 
memory board exists  in each chassis: General Chassis; 



Auxiliary Chassis; and Simulator  Chassis.  Each  reflective 
memory  board  broadcasts  data  to  the  other  reflective 
memory  boards when a  change  has  been  detected.  This 
process  allows  each  boards  memory  to  consist of a mirror 
image of the other boards. 

SE Sofrware Description 

The  SE  Software  is  partitioned  into  Non-Real-Time  and 
Real-Time. It runs in both modes  simultaneously  to  yield 
enough processing margin  for  the  actual  spacecraft 
simulation to run in  Real-Time.  Figure 2 is an overview Of 

the SE Software  broken  down to a task level. 

Near-Real-Time SofrYvare 

The  Near-Real-Time  portion of the SE Software  provides 
the simulation interface  for  the  User.  The  Near-Real-Time 
can  initialize,  change  and  communicate to the  Real-Time 
software via Etherner connections.  The  Near-Real-Time runs 
under the  UNIX  Operating  System and is  composed of the 
Telemetry Handler,  Archive,  Command  Parser,  Display, . 
Post  Processing,  History  and  Hardcopy  data  server 
functions.  The main operations of these tasks are  to  control 
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storage, display and printing of  data.  The Near-Real-Time 
also houses initial loads  and  data  files  for the Real-Time 
software. 

Data transfers in the Near-Real-Time are based on the  UNIX 
pipeline concept. A pipeline  is a collection of pipes between 
pairs of  processes. A pipe is an  open file connecting two 
processes. Data that is written into a pipe at one end may be 
read  from the pipe at the  other  end.  The  UNIX  system 
automatically handles synchronization, scheduling and 
buffering of  pipes. 

Real-Time  Software 

The Real-Time software performs  the core simulation of the 
Cassini Spacecraft and environment. Timing is  very crucial. 
The program execution and  data transfers have to  be 
performed within microseconds of  its required time. 

Although the Blackboard synchronization is performed via 
hardware, the Blackboard database  engine is run in real- 
time. The Blackboard database  is  composed of over 2000 
records. Each record is  composed  of many attributes that 
identify the data characteristics, how the record is updated, 
what functions are performed when the  data  is modified, and 
links to other records. 

Data transfer from the Real-Time  to  the Near-Real-Time is 
performed when the data transfer flag  for any Blackboard 
record is set. When this flag is set the data client retrieves 
the  data  for that particular Blackboard record and passes it 
through a datagram socket.  The Near-Real-Time program 
receives the data. The  data  is then piped in a distributed 
method throughout the Near-Real-Time section. 

Operating  System 

Since the SE Software runs in a multi-processor 
environment, an operating system exists  for each computer. 
The SE Software consists of three different operating 
systems: MSDOSTM, UNIX  and  VXWorksTM.  In  the 
original system an additional operating system, SKYTM, was 
used for the dynamics and celestial simulation processors. 
PowerPC processors replaced these processors. 

Each SUN computer in the testbed houses and runs its  own 
UNIX operating system. In using the UNIX  operating 
system, networking by way of TCPAP allows information 
and resources to  be  shared between each Sun Workstation. 
The only drawback of the UNIX operating system is that it 
does not run fast enough to support real-time testing. The 
operating systems that run in real-time in the SE simulation 
are VXWorksTM. 

Each  PowerPC processor runs with  its own copy of the 
VXWorksTM operating system. These processors run most of 
the SE Software which interface with the hardware in the 
testbed. 

MSDOS is  used in  the  Bus Analyzer Tool (BAT) and 
graphics computer. The  BAT  is dedicated to monitoring 
and capturing the 1553 bus traffic for Post-test  analysis. 
This  data  is sent to  the Archive system via a File Transfer 
Protocol (FTP) connection. The graphics computer displays 
a Real-Time animation of the  spacecraft and its 
environment. 

Real-Time  Dynamics  Simulation 

The Dynamics Algorithms for  Real-Time Simulation 
(DARTS) simulator for  the Cassini Spacecraft consists of a 
central flexible body with a number of articulated rigid-body 
appendages. The demanding  performance requirements 
from the spacecraft control system require the use  of a high 
fidelity simulator for control system design and testing. The 
DARTS algorithm provides a new algorithmic and hardware 
approach  to  the  solution of this “hardware-in-the-loop” 
simulation problem. It  is based upon the efficient spatial 
algebra dynamics for  flexible multibody systems. A parallel 
and vectorized version of this algorithm is implemented on a 
low-cost microprocessor computer [6,7]. \ 

Analysis  Tools 

The Real-Time analysis tools used for immediate insight 
into testbed operation included various custom plotting 
tools, flight computer memory read-out decoding, pixel  star 
scanner display and spacecraft display. Simple 
commercially available utilities were also used to quickly 
review data. These  tools include such things as GREP and 
Netscape@ Navigator. 

Post-test evaluation analysis tools are used to extract, 
evaluate and display data.  These  tools  are commercially 
available or freeware tools. These tools range from major 
analysis tools such as MathLab,  to  common business 
programs such as Microsoft@ Excel. 

3. INNOVATIONS  INCORPORATED 

The major innovations that were incorporated into  the 
Cassini AACS SE included centering the system around a 
database concept, use of the internet and using an effective 
archive system for dissemination of test data and test  results. 

Database  Concept 

The test bed is centered  on a database processing system. 
Inputs, such as equipment inputs, hardware interfaces, 
environmental parameters and user commands,  are kept  in a 
relational database with a time oriented archiving system. 
Outputs are extracted from the database  and sent to flight 
equipment and the user. The various simulations, while 
performing complicated calculations, in general simply 
extract data base items and input values into the database. 
User commands and display items are manipulated the  same 
way. The design and internal workings of  the data base 
engine coordinate the inputs and  outputs. Program 
dispatching is based on changed values or exception 
conditions. Coupled with a Real-Time clock, which  is  used 



to  activate an update cycle, we have  developed  a  fully 
functional simulation system utilizing using significant 
amounts of Commercial Off The  Shelf  (COTS)  software and 
significantly smaller amounts of custom built software. 

The  data base system also coordinates  activities  between 
multiple computers demonstrating that the various  processes 
are truly independent. The  various  computers  communicate 
via reflective memory, serial UO and  local networks. 

Use of the Internet 

We used the Internet extensively  in  our  data  archive  system. 
The  major data used  in our  test  analysis  are:  1)  the 
telemetry stream; 2)  commands  issued;  3)  1553-bus  traffic 
and 4) environmental data. All of this  data  is time-stamped 
and  collected for a complete run. It  is then compressed  and 
stored on our archive system. The  data is then made 
available  for the test analysts. All of the  data  is  also 
available in Real-Time  but  most  issues  and  final test 
acceptance requires a final  analysis that cannot be performed 
in Real-Time.  Once the data  has  been placed on  the  archive 
system,  the analysts access it via the  Internet. The analysts 
“log on” to the archive web site  and by following  a  simple 
Web  page interface, they are  able to extract the data that is 
relevant to the issue or test that they are  interested  in.  This 
data  is usually downloaded to their  respective  workstations, 
which include Sun Workstations,  Apple  Macintoshes and 
PC’s of all vintages. They then use their  desired  local  tools 
to examine the test data.  These  tools  range  from high 
caliber  tools such  as LabVIEWTM to common  tools such as 
Microsoft@ Excel and simple text  editors. 

Data  Archive System 

We  made making test data available to developers  and 
analysts  one of our primary goals early in development.  That 
this  occurred concurrently with the  rise of the web is no 
coincidence.  The web allowed users of Mac’s, PC’s and Unix 
boxes near equal access to the data,  problem  reports and test 
reports. 

It  is  possible to use our  archive system’s Website  based 
tools to look at the data.  However,  most analysts prefer to 
use their own tools with  which they are  more  accustomed  to 
using and  are  more specific to their respective tasks at hand. 
This is a clear indication that a basic set of tools to gain 
primary access the data can  be  defined  for  a  complete 
project but the analysts should select or build their own 
analysis  tools to solve their specific  issues. 

The  reason for this is that at the  beginning of a project, it is 
impossible to define all the  requirements needed for  what 
data  and how  the data should be  analyzed.  There  are  just 
too  many variables to make this possible. By relying on the 
individual analysts to select  their  own  tools, the analysts are 
more  efficient and produce better  results.  This  also 
eliminates the bottleneck that a centralized analysis system 
would create should upgrades and  enhancements be needed 

to resolve  issues or problems. 

Table  1  shows the number of  archive  data  accesses made by 
the  project  personnel for the year 1998.  Note that this is 
post launch at a  time when we reduced  the  number  of 
supported  testbeds  from  3 to 2.  This  data  works  out to about 
100  accesses/workday. - 

Table 1: Archive  System  Data  Accesses 

Period  Data 

Jan  1998  2101 
Feb  1998  2332 
Mar  1998  2584 
Apr  1998  2279 
May  1998  2104 
Jun  1998  1936 
Jul  1998  2227 
Aug 1998 1255 
Sep  1998 1337 
Nov  1998  1489 
Nov  1998 1915 
Dec  1998  1680 

Accesses 

Table  2  shows the amount of data that has been archived 
during  the year 1998.  The intervals  represent thirty-day 
periods. The  simulation and telemetry numbers are 
uncompressed  data  bytes; the 1553-bus data numbers 
represent bytes of compressed  data with an approximate 20 
to 1 compression  ratio. 

Table  2: AACS Archive Data  (bytes) 

30-Day Telemetry and 1553-Bus Data 
Period Environment (compressed) 

1 132418332 142723432 
2  193355 152 244533122 
3  3 17075 199 2865  1  1679 
4  249437125 3  17087748 
5 181165428 129923737 
6  177305306 315628612 
7  12641  1562 274394502 
8  206154330 4021  14089 
9  119562744 251911716 
10  375162167 787427171 
11  159840857 290101035 

4. &SSONS LEARNED 

The  following  advice  is highly recommended  for future 



testbed projects. Some of these lessons were learned  from 
previous projects and we were glad to  have taken the  advice. 

Get Involved  Early In Requirements  Definition 

Software and hardware engineers need to  be involved in 
each other’s requirements definition from  concept  through 
delivery. The testbed engineers should also be involved 
with the spacecraft or instrument’s requirements. This 
lesson  goes  to  the heart of developing an economical 
project. By following this rule, we were able  to avoid costly 
redesigns. 

Adhere To Strict Configuration  Control 

We highly recommend following a rigid configuration 
control policy. In most cases it is well worth the expense of 
adapting or developing the tools necessary to implement the 
policies. With  the  proper tool, software  developers will 
follow  the configuration controls. In  those  few  cases were 
we failed to follow this rule, code was lost  or  errors were 
introduced resulting in added expense. 

Continuity of Personnel 

We recommend that a core group of  developers be 
maintained over  the life of a project. We seriously  suffered 
from continual turnover of our dynamics domain  experts 
costing  an estimated additional four man-years of additional 
work. 

Build and  Release Ofen 

Plan  for the capability to incorporate changes  and make 
quick deliveries. Plan on making partial or  stopgap 
deliveries.  The Cassini AACS SE software is an  evolving 
entity. The fidelity of the models and simulators  are 
continually being tightened. Capabilities based on user 
feedback need quick turnaround to  provide needed test 
functions. It  is  desirable  to  be  able  to  make updates where 
only one change at a time is delivered. Users tend to lack 
confidence in a system where several changes  have been 
made in a delivery. 

Deliver the  Development Tools with  the  System 

A software delivery should also include the tools needed to 
create  the software delivery. Tools  evolve at a rapid  rate. 
Often times there is a need  to  run an  old version of a 
software delivery for problem resolution purposes.  This 
capability can be  lost if the toolset originally used has 
advanced  to where it is  no longer backward compatible. 

5. FUTURE DIRECTIONS AND INNOVATIONS 

The Cassini AACS SE has demonstrated that new 
innovations can significantly reduce development  costs. 
Areas that  we are currently considering for future systems 
include an enhanced use  of the internet, an integrated 

upgrade and configuration  process, existing COTS software 
and  ultra-high level system  development languages. 

Enhanced Use of the  Internet 

Future evolution of  Real-Time simulation systems will 
include the use of the  Internet.  The Internet can  be used for 
inter-process and inter-computer communication. with our 
current system we have demonstrated that a loosely coupled 
set of computers and  tasks can be combined into one 
effective simulation system. With the introduction of the 
Internet, it should be  possible  to organize a set of computers 
or web sites to  perform the same functions. The obvious 
questions that would have  to  be investigated include the 
various time lags  involved, security concerns, reliability and 
reconfiguration. These  issues  are not insurmountable. The 
possible use  of dedicated networks with gateways could 
provide the required security and available transmission 
bandwidth to make this a reality. 

Component  Upgrade and Configuration  Management 

Upgrading of individual components could becdme 
transparent to the  system thus reducing the required 
management and system  coordination costs. This could be 
achieved with planned backward compatibility. For 
example, the individual components in a system would 
identify its “version level” and the “version level”  of  any 
required external components  or interfaces. So long as that 
one maintains backward compatibility, another component 
could be upgraded, thus  supplying  its new version (n) and  its 
previous versions (n-1, n-2 . .. 1). As a result the new 
version  would be  transparent  to  its existing interfaces. It  is 
also reasonable to  think  about a component interacting with 
the rest of the system using multiple previous versions. This 
will  greatly simplify the  upgrade and maintenance issues and 
costs that  now dominate the industry. 

COTS Software 

The use  of COTS  components will probably increase in the 
future. Our current system clearly demonstrates that COTS 
components can be incorporated into high fidelity systems. 
The benefits would include  the use  of low  cost, sometimes 
free, development systems,  an availability of  technical 
personnel, reduced maintenance costs, non-obsolesce, and 
the ability  to execute  projects in a geographically dispersed 
area. The main benefit would be the ability to incorporate 
COTS development systems and tools such as JAVATM, 
VxWorks, LINUX and Windows (CE or NT). 

There already exists a large array of software that  although 
was developed with commercial business applications in 
mind, can be utilized in a simulation system. It  is even 
conceivable that something  like a spreadsheet application 
could be effectively used. The major value of using COTS 
is  lower  initial and long-term costs, larger available 
workforce to support the  system and commonality with other 
systems. The obvious  disadvantages involve having  less 



direct control over the  product.  This latter issue  is 
becoming less serious. It  is  true that if COTS  components 
are used and one runs into a bug, one  does not have the 
control  to dictate an  immediate fix. But this is mitigated by 
two factors: 1) with larger numbers of people using a COTS 
product, bugs get identified and fixed earlier in a products 
life cycle; and 2) usually there are multiple ways of doing 
something. So if one approach  has a bug there is usually a 
less efficient  method that can  be employed to  get  around  the 
problem. Also, in a competitive environment, there  may 
also  be other vendors with competing products that can  be 
employed  to resolve the issue. 

Existing Types of COTS  Software 

What types of COTS  could be used? Data base  engines, 
user interfaces, interpreters and compilers (JAVATM, Basic, 
C++, Visual Basic), development environments, support 
tools, report generators, spreadsheets,  or general device 
drivers. 

Use of PC’s and the  WindowsTM system may also  be 
possible. We  are currently looking at Windows NTTM  as a 
possible alternative. It  seems that the answer is “yes” but 
the  jury is  still out. Certainly, the differences between 
Windows NTTM and UNIX  are  obvious and the  political 
concerns are also apparent,  but  the economic concerns  favor 
a  widely used, inexpensive operating system. 

Potential Future COTS SofnYare 

It  appears that  we are following a path where the  major 
. components of  a simulation system may all be  COTS  or 

inherited software. The main items left to the specific 
projects would consist of device drivers and high level 
algorithms. The latter could be developed using high level 
visual tools to describe the system. Then automatic source 
code generators could be used to  create the actual software. 
Going one step further, it  may even be possible to define  the 
flight system in an ultra-high level language and then 
automatically generate not only the “flight code” used by the 
actual system, but also  the simulation system software 
needed to exercise the flight software. 

6. SUMMARY AND CONCLUSIONS 

The issues and advancements presented will significantly 
reduce the overall costs of future support equipment 
simulation systems. Couple  the potential economic savings 
with the prospect of inheriting or bequeathing to  future 
projects this simulation infrastructure, the much touted 
“faster, better, cheaper” mantra may  actually be possible. 
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